Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present Atacama Large Millimeter/submillimeter Array observations of SiO, SiS, H2O, NaCl, and SO line emission at ∼30–50 mas resolution. These images map the molecular outflow and disk of Orion Source I (SrcI) on ∼12–20 au scales. Our observations show that the flow of material around SrcI creates a turbulent boundary layer in the outflow from SrcI, which may dissipate angular momentum in the rotating molecular outflow into the surrounding medium. Additionally, the data suggest that the proper motion of SrcI may have a significant effect on the structure and evolution of SrcI and its molecular outflow. As the motion of SrcI funnels material between the disk and the outflow, some material may be entrained into the outflow and accrete onto the disk, creating shocks that excite the NaCl close to the disk surface.more » « less
- 
            Abstract We used new high spectral resolution observations of propynal (HCCCHO) toward TMC-1 and in the laboratory to update the spectral line catalog available for transitions of HCCCHO—specifically at frequencies lower than 30 GHz, which were previously discrepant in a publicly available catalog. The observed astronomical frequencies provided a high enough spectral resolution that, when combined with high-resolution (∼2 kHz) measurements taken in the laboratory, a new, consistent fit to both the laboratory and astronomical data was achieved. Now with a nearly exact (<1 kHz) frequency match to theJ= 2–1 and 3–2 transitions in the astronomical data, using a Markov Chain Monte Carlo analysis, a best fit to the total HCCCHO column density of cm−2was found with a surprisingly low excitation temperature of just over 3 K. This column density is around a factor of 5 times larger than reported in previous studies. Finally, this work highlights that care is needed when using publicly available spectral catalogs to characterize astronomical spectra. The availability of these catalogs is essential to the success of modern astronomical facilities and will only become more important as the next generation of facilities comes online.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Polycyclic aromatic hydrocarbons (PAHs) are organic molecules containing adjacent aromatic rings. Infrared emission bands show that PAHs are abundant in space, but only a few specific PAHs have been detected in the interstellar medium. We detected 1-cyanopyrene, a cyano-substituted derivative of the related four-ring PAH pyrene, in radio observations of the dense cloud TMC-1, using the Green Bank Telescope. The measured column density of 1-cyanopyrene is cm−2, from which we estimate that pyrene contains up to 0.1% of the carbon in TMC-1. This abundance indicates that interstellar PAH chemistry favors the production of pyrene. We suggest that some of the carbon supplied to young planetary systems is carried by PAHs that originate in cold molecular clouds.more » « lessFree, publicly-accessible full text available November 15, 2025
- 
            Abstract Molecular lines tracing the orbital motion of gas in a well-defined disk are valuable tools for inferring both the properties of the disk and the star it surrounds. Lines that arise only from a disk, and not also from the surrounding molecular cloud core that birthed the star or from the outflow it drives, are rare. Several such emission lines have recently been discovered in one example case, those from NaCl and KCl salt molecules. We studied a sample of 23 candidate high-mass young stellar objects (HMYSOs) in 17 high-mass star-forming regions to determine how frequently emission from these species is detected. We present five new detections of water, NaCl, KCl, PN, and SiS from the innermost regions around the objects, bringing the total number of known briny disk candidates to nine. Their kinematic structure is generally disk-like, though we are unable to determine whether they arise from a disk or outflow in the sources with new detections. We demonstrate that these species are spatially coincident in a few resolved cases and show that they are generally detected together, suggesting a common origin or excitation mechanism. We also show that several disks around HMYSOs clearly do not exhibit emission in these species. Salty disks are therefore neither particularly rare in high-mass disks, nor are they ubiquitous.more » « less
- 
            Abstract We report the detection of the lowest-energy conformer of E -1-cyano-1,3-butadiene ( E -1- C 4 H 5 CN ), a linear isomer of pyridine, using the fourth data reduction of the GBT Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) deep spectral survey toward TMC-1 with the 100 m Green Bank Telescope. We perform velocity stacking and matched-filter analyses using Markov chain Monte Carlo simulations and find evidence for the presence of this molecule at the 5.1 σ level. We derive a total column density of 3.8 − 0.9 + 1.0 × 10 10 cm −2 , which is predominantly found toward two of the four velocity components we observe toward TMC-1. We use this molecule as a proxy for constraining the gas-phase abundance of the apolar hydrocarbon 1,3-butadiene. Based on the three-phase astrochemical modeling code NAUTILUS and an expanded chemical network, our model underestimates the abundance of cyano-1,3-butadiene by a factor of 19, with a peak column density of 2.34 × 10 10 cm −2 for 1,3-butadiene. Compared to the modeling results obtained in previous GOTHAM analyses, the abundance of 1,3-butadiene is increased by about two orders of magnitude. Despite this increase, the modeled abundances of aromatic species do not appear to change and remain underestimated by one to four orders of magnitude. Meanwhile, the abundances of the five-membered ring molecules increase proportionally with 1,3-butadiene by two orders of magnitude. We discuss the implications for bottom-up formation routes to aromatic and polycyclic aromatic molecules.more » « less
- 
            Abstract Using data from the Green Bank Telescope (GBT) Observations of TMC-1: Hunting for Aromatic Molecules (GOTHAM) survey, we report the first astronomical detection of the C 10 H − anion. The astronomical observations also provided the necessary data to refine the spectroscopic parameters of C 10 H − . From the velocity stacked data and the matched filter response, C 10 H − is detected at >9 σ confidence level at a column density of 4.04 − 2.23 + 10.67 × 10 11 cm −2 . A dedicated search for the C 10 H radical was also conducted toward TMC-1. In this case, the stacked molecular emission of C 10 H was detected at a ∼3.2 σ confidence interval at a column density of 2.02 − 0.82 + 2.68 × 10 11 cm −2 . However, as the determined confidence level is currently <5 σ , we consider the identification of C 10 H as tentative. The full GOTHAM data set was also used to better characterize the physical parameters including column density, excitation temperature, line width, and source size for the C 4 H, C 6 H, and C 8 H radicals and their respective anions, and the measured column densities were compared to the predictions from a gas/grain chemical formation model and from a machine learning analysis. Given the measured values, the C 10 H − /C 10 H column density ratio is ∼ 2.0 − 1.6 + 5.9 —the highest value measured between an anion and neutral species to date. Such a high ratio is at odds with current theories for interstellar anion chemistry. For the radical species, both models can reproduce the measured abundances found from the survey; however, the machine learning analysis matches the detected anion abundances much better than the gas/grain chemical model, suggesting that the current understanding of the formation chemistry of molecular anions is still highly uncertain.more » « less
- 
            Abstract We report a systematic study of all known methyl carbon chains toward TMC-1 using the second data release of the GOTHAM survey, as well as a search for larger species. Using Markov Chain Monte Carlo simulations and spectral line stacking of over 30 rotational transitions, we report statistically significant emission from methylcyanotriacetylene (CH 3 C 7 N) at a confidence level of 4.6 σ , and use it to derive a column density of ∼10 11 cm −2 . We also searched for the related species, methyltetraacetylene (CH 3 C 8 H), and place upper limits on the column density of this molecule. By carrying out the above statistical analyses for all other previously detected methyl-terminated carbon chains that have emission lines in our survey, we assess the abundances, excitation conditions, and formation chemistry of methylpolyynes (CH 3 C 2 n H) and methylcyanopolyynes (CH 3 C 2 n -1 N) in TMC-1, and compare those with predictions from a chemical model. Based on our observed trends in column density and relative populations of the A and E nuclear spin isomers, we find that the methylpolyyne and methylcyanopolyyne families exhibit stark differences from one another, pointing to separate interstellar formation pathways, which is confirmed through gas–grain chemical modeling with nautilus .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
